
NAG C Library Function Document

nag_dpptri (f07gjc)

1 Purpose

nag_dpptri (f07gjc) computes the inverse of a real symmetric positive-definite matrix A, where A has been
factorized by nag_dpptrf (f07gdc), using packed storage.

2 Specification

void nag_dpptri (Nag_OrderType order, Nag_UploType uplo, Integer n, double ap[],
NagError *fail)

3 Description

To compute the inverse of a real symmetric positive-definite matrix A, this function must be preceded by a
call to nag_dpptrf (f07gdc), which computes the Cholesky factorization of A using packed storage.

If uplo ¼ Nag Upper, A ¼ UTU and A�1 is computed by first inverting U and then forming

ðU�1ÞðU�1ÞT .

If uplo ¼ Nag Lower, A ¼ LLT and A�1 is computed by first inverting L and then forming

ðL�1ÞT ðL�1Þ.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: uplo – Nag_UploType Input

On entry: indicates whether A has been factorized as UTU or LLT as follows:

if uplo ¼ Nag Upper, A ¼ UTU , where U is upper triangular;

if uplo ¼ Nag Lower, A ¼ LLT , where L is lower triangular.

Constraint: uplo ¼ Nag Upper or Nag Lower.

3: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

4: ap½dim� – double Input/Output

Note: the dimension, dim, of the array ap must be at least maxð1; n� ðnþ 1Þ=2Þ.

f07 – Linear Equations (LAPACK) f07gjc

[NP3645/7] f07gjc.1

On entry: the upper triangular matrix U stored in packed form if uplo ¼ Nag Upper or the lower
triangular matrix L stored in packed form if uplo ¼ Nag Lower, as returned by nag_dpptrf
(f07gdc).

On exit: U is overwritten by the upper triangle of A�1 if uplo ¼ Nag Upper; L is overwritten by

the lower triangle of A�1 if uplo ¼ Nag Lower, using the same storage scheme as on entry.

5: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

NE_SINGULAR

Element hvaluei of the diagonal of the Cholesky factor is zero. The Cholesky factor is singular, and
the inverse of A cannot be computed.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed inverse X satisfies

kXA� Ik2 � cðnÞ��2ðAÞ and kAX � Ik2 � cðnÞ��2ðAÞ;

where cðnÞ is a modest function of n, � is the machine precision and �2ðAÞ is the condition number of A
defined by

�2ðAÞ ¼ kAk2kA
�1k2:

8 Further Comments

The total number of floating-point operations is approximately 2
3
n3.

The complex analogue of this function is nag_zpptri (f07gwc).

9 Example

To compute the inverse of the matrix A, where

A ¼

4:16 �3:12 0:56 �0:10
�3:12 5:03 �0:83 1:18
0:56 �0:83 0:76 0:34

�0:10 1:18 0:34 1:18

1
CCA

0
BB@ :

f07gjc NAG C Library Manual

f07gjc.2 [NP3645/7]

Here A is symmetric positive-definite, stored in packed form, and must first be factorized by nag_dpptrf
(f07gdc).

9.1 Program Text

/* nag_dpptri (f07gjc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer ap_len, i, j, n;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo_enum;
Nag_OrderType order;

/* Arrays */
char uplo[2];
double *ap=0;

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I,J) ap[J*(J-1)/2 + I - 1]
#define A_LOWER(I,J) ap[(2*n-J)*(J-1)/2 + I - 1]

order = Nag_ColMajor;
#else
#define A_LOWER(I,J) ap[I*(I-1)/2 + J - 1]
#define A_UPPER(I,J) ap[(2*n-I)*(I-1)/2 + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f07gjc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);
ap_len = n * (n + 1)/2;

/* Allocate memory */
if (!(ap = NAG_ALLOC(ap_len, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
Vscanf(" ’ %1s ’%*[^\n] ", uplo);
if (*(unsigned char *)uplo == ’L’)

uplo_enum = Nag_Lower;
else if (*(unsigned char *)uplo == ’U’)

uplo_enum = Nag_Upper;
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}
if (uplo_enum == Nag_Upper)

f07 – Linear Equations (LAPACK) f07gjc

[NP3645/7] f07gjc.3

{
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

Vscanf("%lf", &A_UPPER(i,j));
}

Vscanf("%*[^\n] ");
}

else
{

for (i = 1; i <= n; ++i)
{

for (j = 1; j <= i; ++j)
Vscanf("%lf", &A_LOWER(i,j));

}
Vscanf("%*[^\n] ");

}

/* Factorize A */
f07gdc(order, uplo_enum, n, ap, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07gdc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Compute inverse of A */
f07gjc(order, uplo_enum, n, ap, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07gjc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print inverse */
x04ccc(order, uplo_enum, Nag_NonUnitDiag, n, ap,

"Inverse", 0, NAGERR_DEFAULT);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04ccc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (ap) NAG_FREE(ap);
return exit_status;
}

9.2 Program Data

f07gjc Example Program Data
4 :Value of N
’L’ :Value of UPLO
4.16

-3.12 5.03
0.56 -0.83 0.76

-0.10 1.18 0.34 1.18 :End of matrix A

9.3 Program Results

f07gjc Example Program Results

Inverse
1 2 3 4

1 0.6995
2 0.7769 1.4239
3 0.7508 1.8255 4.0688
4 -0.9340 -1.8841 -2.9342 3.4978

f07gjc NAG C Library Manual

f07gjc.4 (last) [NP3645/7]

	f07gjc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	ap
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_SINGULAR
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

